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EVERY TRANSFORMATION IS BILATERALLY 
DETERMINISTIC 

BY 

DONALD S. ORNSTEIN AND BEN JA M I N  WEISS* 

ABSTRACT 

Every ergodic transformation T with a finite generator ct, has another finite 
generator/3,  which refines a, and is bilaterally deterministic, i.e. Viii>. T~/3 is 
the full o--algebra for every n. 

1. Recall that a finite state s tat ionary stochastic process {x, }~_= is said to be 

deterministic if Xo is measurable  with respect  to the p a s t - i . e . ,  ~ (... x_~,x_,), 

the o--field generated by {x~}~<o. By the stationarity,  this is equivalent  to the 

requirement  that for all n, 3 ~ ( . . - , x _ , _ , , x _ , ) = ~ (  . . . .  ,x_,,Xo, X, , . . . ) .  As a 

natural generalization we propose  to call a process  bilaterally deterministic if 

for  all n ~({x~ ;1i1 => n}) = ~({x~ ; all i}). This is tan tamount  to requiring that a.s. 

given the far past {x,}~ . . . .  and the distant future,  {x~},>,, the present  can be 

reconstructed.  Natural ly any deterministic process  is bilaterally deterministic,  

but as we shall soon see the converse  is far  f rom being true. The determinism of 

a process is a proper ty  of its i somorphism class in the following sense. A 

stat ionary stochastic p~ocess {x,} defines a measure  tz on X = S z, where S is 

the finite set of possible values of x,. Let  ~ be the product  ~r-field and 

T: X--- ,X the coordinate  shift, then (X,~ , f z ,  T) reflects the probabilistic 

structure of the x , -process ,  and in fact  the partition a that cor responds  to the 

possible values of x0 is a generator  for T in the sense that VT= T" a = ~ .  We 

say that two processes  are isomorphic if the measure  preserving t ransforma-  

tions that they define are isomorphic as measure  preserving t ransformat ions .  

As is known, a f.s.s.s, process  is deterministic if and only if the cor respond-  

ing t ransformat ion has zero entropy,  and thus if two f.s.s.s, processes  are 

isomorphic,  one is deterministic if and only if the other one is. In contrast  it 

turns out that the proper ty  of bilateral determinism is not a proper ty  of the 
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isomorphism class of a process.  In fact  our main result here is that any ergodic 

f.s.s.s, process is isomorphic to an ergodic f.s.s.s, process which is bilaterally 

deterministic. We devote  the next section to proving this, and make some 

further  comments  concerning the interpretation in the final section. Similar 

results have been obtained independently by Gurevich and Furstenberg.  

2. We take as data for  describing an ergodic f.s.s.s, process an ergodic 

measure preserving transformation (X,~, /~ ,  T) and a finite generator  a--- 

{Ao,-" ,Ak- ,} .  We wish to find another  f i n i t e  generator /3 that defines a 

bilaterally deterministic process.  The fact that both a and /3 are generators 

means of course that the stochastic processes that they define are isomorphic. 

The construction of /3  will be carried out in a sequence of steps. Let  {nl} be a 

sequence tending rapidly to infinity and e~ a sequence tending rapidly to 

z e r o - - t h e  precise rates required will become clear during the construction. We 

will guarantee that/3 be a generator  by having it refine a, at every  stage of the 

construction,  and hence also in the limit. 

S t e p  1. Build a Kakutani-Rohlin tower in the base E,,  height hi, such that 

n~-J  

I ~ ( X  ~ [,.) T I E , )  < e , .  
o 

Think of the tower as being divided into n, groups each consisting of n, 

successive levels. The sets of /3, will be: ~" B" '  ~" B~ , O = < i < k ;  ~ . h , B ~ . , , O < - i < k ;  

BI.)', 0 - i , j  < k .  (The i coordinate will just give a.) 

(i) Any point x in the first n, levels of the tower will be assigned to B~i'~ (the 

i is the one for which x E A~.) 

(ii) Any point x in the last n~ levels of the tower will be assigned to BI.'; (the j 

is the one for which x ~ A,.) 

(iii) Let  

be the a - n a m e  of a point x in the n, + l- level  of the tower, that is 

x ~ A i . . . . .  T x  ~ A i ..... " " ,  T~x ~ A,,+i+~, " " 

Then x is assigned to the set 

a - 2  

B !'~,.,.,,~ where j =  ~ i ~  .... , (mod k), 
I - I  
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Tx is assigned to the set 

B 9~ • where j ="~-q~2il .... 2 , " "  !n1~2,1 
I=1  

and so on to T"'- 'x  which is assigned to the set 

"2' Bg~.  where ] = it.,, (mod k). !2nl.J 
1=2 

(iv) Points x on all other  levels, or not on the tower,  are assigned to B~" 

where the j is the one for which x E Aj. 

This stage defined a partition which we denote  by /31. Clearly /31 is a 

refinement of a, and has the following features.  On a large part of the space the 

/31-name of a point enables one to identify the column level and correct  n, 

successive mistakes in the a -name.  To be more precise, if 

x E "~U"~ T~EI, 
j = 3 n l + l  

and if for  all Iil-- n1/2 it is known to what set in/3~, T'x belongs; then using this 

information one can determine to what set in a, T~x belongs for all i. To do this 

use the bot tom b-block and top t-block to position the correct  level of x in the 

tower, and then the definition in part (iii) enables one to fill in missing 

a-symbols .  Note that the set of exceptional points has at this point measure 

less than 51nl + e~. 

At the ith stage we repeat the construction of step 1 (i)-(iii), getting a tower 

with base E~ with n~ and e~ replacing nl, e~. In part (iv) we replace a by/3~ ,, 

that is to say the/3~ constructed is the same as/3~-1, except  for  the modifications 

decreed by (i)-(iii). Now the sum total of the changes made to /3~ in the 

succeeding steps is bounded by 

Israel J. Math., 

c, = ~ 3/nj, 
i>i 

and our first requirement on the nj is that X c, should converge.  Fur thermore,  

we shall require that 

~ (n,c, + e~) 
I 

converge.  In that way, if G~ is defined to be the set of 

x E T~E~ 
j = 3 n i + l  
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for  which the fl,-name and the flj-name throughout  the n 2-levels of the tower 

remain the same for all j > i, we have that 

~ t z ( X -  G,) < +oo. 

From the foregoing it is clear that the /3, converge to a partition /3 which 

refines a. Fur thermore , /3  =/3, on the set G,. By the Borel-Canteili lemma we 

have a set of tz-measure 1, G and for x E G there is some index n such that 

x E G~ for all i > n. Suppose now that x E G, and that for all Ill->__ m we are told 

to what set in /3, Tix belongs. Then successively for all indices j such that 

nj > 2m we at tempt to fill in the a -name,  working under the hypothesis  that 

x E Gi. Eventually we succeed,  since x ~ Gi for  all large j. This clearly implies 

that 

k 

V T ia C V Ti/3 
- k  I i l> l  

for  all k, l, and since a is a generator one deduces that the /3-process is 

bilaterally deterministic. We have therefore  proved the following theorem: 

T~tEOREM. Given any ergodic finite state stationary stochastic process, there 

is an isomorphic ergodic finite state stationary stochastic process which is 

bilaterally deterministic. 

3. If one drops the requirement that the processes be finite state, the 

problems become less interesting since very naive codings could then make 

anything even de te rmin i s t i c - - l e t  alone bilaterally deterministic. The 

hypothesis of ergodicity was only made to simplify the presentation and is not 

really essential. All that we used was the existence of arbitrary Kakutani- 

Rohlin towers which exist for  aperiodic transformations.  On the periodic part 

any process is certainly bilaterally deterministic, so that the theorem holds in 

general. 

One can interpret the theorem in another  way. Instead of viewing some finite 

portion of the /3-name as unknown, we can imagine the full /3-name being 

transmitted over  a noisy channel and being received with a finite number of 

errors. The theorem then states that allowing infinite codes (i.e,, general 

measure theoretic isomorphism) one can encode perfectly,  through a noisy 

channel which makes finite errors. Naturally both the encoding and decoding 

presuppose the entire signal, so this is not yet a "pract ical"  result in any sense 

of the term. 
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Taking a closer  look at the construct ion,  the reader  should be able to 

convince himself that perfect  decoding is also possible if finitely many  bits are 

dropped out or inserted in additional places. The fact  that the true spacing 

between the n, - b ' s  and n~ • • • t ' s  signalling the bot tom and top of the tower  is 

known, means  that the signal can be properly aligned. 

The theorem applies of course  to any Bernoulli-shift and says there that the 

triviality of the bilateral tail for  the Bernoulli-shift is an accident  due to the 

choice of independent  generator.  Since every  process  isomorphic to a B-shif t  

is known to be very weak Bernoulli, we have the phenomenon of a kind of 

asymptot ic  independence (VWB) together  with some sort of d e t e r m i n i s m - - a l l  

of which goes to show that naive intuition can easily lead one astray.  On the 

other  hand, it is not hard to see that a weak Bernoulli process  has a trivial 

bilateral tail, so that the construct ion given here serves also as an example  of  a 

VWB process  that is not WB. 
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